Perhaps the next most important choice is what kind of integration algorithm to use. Above we did a constant-temperature (NVT) algorithm (the actual algorithm is of the Nosé-Hoover type). For constant energy (NVE) runs we create the integrator as follows, here passing only the time-step:
itg = IntegratorNVE(timeStep=0.0025)
(Technical note: this creates an object of the same type as IntegratorNVT,
but here it defaults to NVE mode—in fact in either case one can switch
thermostatting on or off using the SetThermostatOn()
method).
Additional integrators available in RUMD are listed below
Name of Integrator | Description | Arguments | |||||||
---|---|---|---|---|---|---|---|---|---|
IntegratorNVE | The NVE Leap-frog algorithm. | timeStep |
|||||||
IntegratorNVT | The Nos-Hoover NVT algorithm. | timeStep, targetTemperature, thermostatRelaxationTime |
|||||||
IntegratorNPTAtomic | NPT algorithm. (JCP 101, N 5, 1994) |
timeStep, targetTemperature, thermostatRelaxationTime, targetPressure, barostatRelaxationTime
|
|||||||
IntegratorNVU | Algorithm conserving the total potential energy. | dispLength, potentialEnergy |
|||||||
IntegratorMMC | Metropolis NVT Monte Carlo. | dispLength, targetTemperature |
|||||||
IntegratorIHS | Energy minimization via the Leap-frog algorithm. | timeStep |
|||||||
IntegratorSLLOD | Shear an atomic system in the xy-plane using the SLLOD equations. | timeStep, strainRate |
|||||||
IntegratorMolecularSLLOD | Shear a molecular system in the xy-plane using the SLLOD equations. | timeStep, strainRate |
|||||||
IntegratorNPTLangevin | Algorithm which generates the NPT ensemble using Langevin dynamics | timeStep, targetTemperature, friction, targetPressure, barostatFriction, barostatMass |